Application of Savonius Rotor for Hydrokinetic Power Generation

Author:

Doso Oying1,Gao Sarsing1

Affiliation:

1. Department of Electrical Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh 791109, India

Abstract

Abstract Technological advancement is specifically identified by the usage of energy. The energy requirement is increasing because of the exponential population rise, increased industrial activities, and subsequent accelerated economic activities in both urban and suburban areas. The traditional power sources are becoming unsustainable as energy demand and induction of new sources for augmenting the energy need are lopsided. Additionally, traditional energy sources cause pollution, natural hazards, and more importantly, it is uneconomical. Due to these reasons, it becomes compelling to look for alternative sources of energy. Hydropower generation is reliable, non-polluting to a large extent, and a cheaper source of electrical energy. However, the conventional large hydropower projects, especially with reservoir components, are being opposed worldwide for social, environmental, economic, and safety reasons. Therefore, electricity production from free-flowing water may present a viable choice. Here, the free-flowing river water current is used to drive vertical-axis turbines preferably, Savonius rotors which are ideally built for wind energy conversion systems (WECS). The rotor is directly coupled to electric generators, and the scheme presents a typical variable voltage and variable frequency system similar to that of WECS except that the working force is due to water rather than wind. The use of the Savonius rotor for hydrokinetic power generation is uncommon; however, increased exploitation of this methodology may help in augmenting future energy need. This paper reviews the Savonius rotor and its possible application for hydrokinetic power generation; the merits and demerits of such schemes are clearly outlined.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3