Affiliation:
1. Key Laboratory of Clean Energy Conversion Technologies, The University of Nottingham Ningbo China, Ningbo 315100, China
Abstract
Abstract
This research is focused on the gasification performance of coal and its corresponding macerals as well as on the interactions among macerals under typical gasification conditions by Aspen Plus modeling. The synergistic coefficient was employed to show the degree of interactions, while the performance indicators including specific oxygen consumption (SOC), specific coal consumption (SCC), cold gas efficiency (CGE), and effective syngas (CO + H2) content were used to evaluate the gasification process. Sensitivity analyses showed that the parent coal and its macerals exhibited different gasification behaviors at the same operating conditions, such as the SOC and SCC decreased in the order of inertinite > vitrinite > liptinite, whereas CGE changed in the order of liptinite > vitrinite > inertinite. The synergistic coefficients of SOC and SCC for the simulated coals were in the range of 0.94–0.97, whereas the synergistic coefficient of CGE was 1.05–1.13. Moreover, it was found that synergistic coefficients of gasification indicators correlated well with maceral contents. In addition, the increase in temperature was found to promote the synergistic coefficients slightly, whilst at an oxygen to coal mass ratio of 0.8 and a steam to coal mass ratio of 0.8, the highest synergistic coefficient was obtained.
Funder
Ministry of Science and Technology
National Key Research and Development Program of China
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献