Computational Modeling of Damage Development in Composite Laminates Subjected to Transverse Dynamic Loading

Author:

Forghani Alireza1,Vaziri Reza1

Affiliation:

1. Department of Civil Engineering, and Department of Materials Engineering, Composites Group, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada

Abstract

This paper presents a robust computational model for the response of composite laminates to high intensity transverse dynamic loading emanating from local impact by a projectile and distributed pressure pulse due to a blast. Delaminations are modeled using a cohesive type tie-break interface introduced between sublaminates while intralaminar damage mechanisms within the sublaminates are captured in a smeared manner using a strain-softening plastic-damage model. In the latter case, a nonlocal regularization scheme is used to address the spurious mesh dependency and mesh-orientation problems that occur with all local strain-softening type constitutive models. The results for the predicted damage patterns using the nonlocal approach are encouraging and qualitatively agree with the experimental observations. The predictive performance of the proposed numerical model is assessed through comparisons with available instrumented impact test results on a class of carbon-fiber reinforced polymer (CFRP) composite laminates. Force-time histories and other derived cross-plots such as the force versus projectile displacement and progression of projectile energy loss as a function of time are compared with available experimental results to demonstrate the efficacy of the model in capturing the details of the dynamic response. Another case study involving the blast loading of CFRP composite laminates is used to further highlight the capability of the proposed model in simulating the global structural response of composite laminates subjected to distributed pressure pulses.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3