Causal Design Knowledge Acquisition by Constructing BBN Through FCM

Author:

Kim Yun Seon1,Kim Kyoung-Yun Joseph1,Cheah Wooi Ping2,Yang Hyung-Jeong2

Affiliation:

1. Wayne State University, Detroit, MI

2. Chonnam National University, Gwangjusi, South Korea

Abstract

Managing design knowledge is an important concern for industry, including engineering. Engineering firms are facing pressures to increase the quality of their products, to have even shorter lead times and reduced costs. There is also a trend towards globalization resulting in complex supply chains and the need to manage teams that are not necessarily co-located. Design knowledge needs to be exchanged and accessed efficiently. Other motivations for managing design knowledge are to provide a trail for product liability legislation and to retain design knowledge and experience as engineering designers retire. Fuzzy Cognitive Map (FCM) is one of the main formalisms for modeling, representing and reasoning about causal knowledge. Despite the fact that FCM has been used extensively in causal knowledge engineering, there is a lack of methodology for the systematic construction of FCM. Although some techniques were used in the individual construction processes, these techniques were either not systematically documented or too specific to the problem at hand. FCM and Bayesian Belief Network (BBN) are two major frameworks for modeling, representing and reasoning about causal design knowledge. Despite their extensive use in causal design knowledge engineering, there is no reported work which compares their respective roles. This paper deals with three topics, which are systematic constructing FCM, a methodology for FCM-BBN conversion, and comparison FCM and BBN. BBN has a sound mathematical foundation and reasoning capabilities, also it has an efficient evidence propagation mechanism and a proven track record in industryscale applications. However, BBN is less friendly and flexible, and often very time-consuming to generate appropriate conditional probabilities. Thus, Fuzzy Cognitive Map (FCM) is used for the indirect knowledge acquisition, and the causal knowledge in FCM is systematically converted to BBN. Finally, we compare BBNs directly generated by domain experts and generated from FCM, with a realistic industrial example, a fuel nozzle for an aerospace engine.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3