Modeling an Active Vehicle Suspension System With Application of Digital Displacement Pump Motor

Author:

Song Xubin1

Affiliation:

1. Eaton Corporation, Southfield, MI

Abstract

Vehicle suspension design can be simplified by using compressible fluid (CF) based struts. One single CF strut can provide both spring and damping force instead of two independent components of spring and shock absorber in a traditional vehicle suspension system. With the application of a digital displacement pump motor (DDPM) to modulate the fluid amount in CF struts, a hydraulic based active suspension can be developed. Each vehicle suspension corner (i.e., CF strut) can be linked to (at least) one cylinder of a multiple cylinder DDPM. Each cylinder has two poppet valves to allow exchanging flow between strut and accumulator. Those valves are actively controlled according to a properly designed control strategy. Thus DDPM can regulate the fluid flow to/from the CF struts to create a desired strut force at each suspension corner. This paper focuses on elaborating this novel active suspension using CFS and DDPM, and then presents a model that can well capture the macro-behavior of this new active suspension.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model Predictive Control of Low-Speed Partial Stroke Operated Digital Displacement Pump Unit;Modeling, Identification and Control: A Norwegian Research Bulletin;2018

2. Challenges with Respect to Control of Digital Displacement Hydraulic Units;Modeling, Identification and Control: A Norwegian Research Bulletin;2018

3. Optimal control of a wind turbine with digital fluid power transmission;Nonlinear Dynamics;2017-11-02

4. Discrete Linear Time Invariant Analysis of Digital Fluid Power Pump Flow Control;Journal of Dynamic Systems, Measurement, and Control;2017-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3