Laminar Mixed Convection in a Shrouded Fin Array

Author:

Acharya S.1,Patankar S. V.1

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract

An analytical study is made to investigate the effect of buoyancy on laminar forced convection in a shrouded fin array. Two heating conditions are considered; in one, the fins and the base surface are hotter than the fluid, and in the other, they are colder. The results are obtained numerically for a wide range of the governing buoyancy parameter. It is found that with a hot fin and base, the secondary flow pattern is mostly made up of a single eddy. The influence of buoyancy is significant and leads to Nusselt numbers and friction factors which are much higher than for pure forced convection. With a cold fin and base, the presence of a tip clearance between the fins and the shroud generates a multiple eddy pattern. The resulting stratification is responsible for the existence of high axial velocity and temperature in the clearance region relative to that in the inter-fin space. Compared to the hot fin case, the secondary flow is weaker, and therefore a relatively smaller increase in the friction factor is obtained. The Nusselt number is found to increase only in the absence of tip clearance. The distribution of the heat transfer coefficient along the fin and the base for both heating situations is found to be highly nonuniform.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3