Affiliation:
1. Department of Nuclear Engineering, Korea Advanced Institute of Science and Technology, 373-I Kusong-dong Yusong-ku Taejon, Republic of Korea, 305-701
Abstract
Corrosion fatigue tests were performed in air saturated hot water to assess fatigue crack growth behavior of reactor pressure vessel steel at the LWR operating condition. The main test parameter was loading frequency. Crack growth rate was increased with decreasing frequency until a critical frequency. It was found through fractographic study that the enhancement of crack growth rate was environmentally assisted by the hydrogen embrittlement, since brittle striations and cleavagelike facets with microvoid were formed in the crack growth process. The strain rate effects on crack growth rate were investigated through da/dt versus dε/dt curves. At intermediate range, there is a transient point which corresponds to an onset of dynamic strain aging and abruptly increases the crack growth rate; above the transient point, small-size-particle-enhanced brittle cracks, while only large-size-particle-enhanced brittle cracks before the transient. From the fractography, it is suggested that EAC may be enhanced by specific strain rate, and that EAC may be related to interactions of hydrogen with oxide film and to Luders band movement with a high strain gradient at inclusion/matrix interface.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献