A Geometrically Exact Contact Model for Polytopes in Multirigid-Body Simulation

Author:

Williams Jedediyah1,Lu Ying1,Trinkle J. C.2

Affiliation:

1. CS Robotics Lab, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 e-mail:

2. Director CS Robotics Lab, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 e-mail:

Abstract

We present a formulation of nonpenetration constraint between pairs of polytopes which accounts for all possible combinations of active contact between geometric features. This is the first formulation that exactly models the body geometries near points of potential contact, preventing interpenetration while not overconstraining body motions. Unlike many popular methods, ours does not wait for penetrations to occur as a way to identify which contact constraints to enforce. Nor do we overconstrain by representing the free space between pairs of bodies as convex, when it is in fact nonconvex. Instead, each contact constraint incorporates all feasible potential contacts in a way that represents the true geometry of the bodies. This ensures penetration-free, physically correct configurations at the end of each time step while allowing bodies to accurately traverse the free space surrounding other bodies. The new formulation improves accuracy, dramatically reduces the need for ad hoc corrections of constraint violations, and avoids many of the inevitable instabilities consequent of other contact models. Although the dynamics problem at each time step is larger, the inherent stability of our method means that much larger time steps can be taken without loss of physical fidelity. As will be seen, the results obtained with our method demonstrate the effective elimination of interpenetration, and as a result, correction-induced instabilities, in multibody simulations.

Funder

National Science Foundation

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3