Fluid Structure Interaction With Contact Surface Methodology for Evaluation of Endovascular Carotid Implants for Drug-Resistant Hypertension Treatment

Author:

Peter Dinesh A.1,Alemu Yared1,Xenos Michalis1,Weisberg Ori2,Avneri Itzhak2,Eshkol Moshe2,Oren Tal2,Elazar Moshe2,Assaf Yaron2,Bluestein Danny1

Affiliation:

1. Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794

2. Vascular Dynamics Ltd., Herzelia, Israel

Abstract

Drug-resistant hypertensive patients may be treated by mechanical stimulation of stretch-sensitive baroreceptors located in the sinus of carotid arteries. To evaluate the efficacy of endovascular devices to stretch the carotid sinus such that the induced strain might trigger baroreceptors to increase action potential firing rate and thereby reduce systemic blood pressure, numerical simulations were conducted of devices deployed in subject-specific carotid models. Two models were chosen—a typical physiologic carotid and a diminutive atypical physiologic model representing a clinically worst case scenario—to evaluate the effects of device deployment in normal and extreme cases, respectively. Based on the anatomical dimensions of the carotids, two different device sizes were chosen out of five total device sizes available. A fluid structure interaction (FSI) simulation methodology with contact surface between the device and the arterial wall was implemented for resolving the stresses and strains induced by device deployment. Results indicate that device deployment in the carotid sinus of the physiologic model induces an increase of 2.5% and 7.5% in circumferential and longitudinal wall stretch, respectively, and a maximum of 54% increase in von Mises arterial stress at the sinus wall baroreceptor region. The second device, deployed in the diminutive carotid model, induces an increase of 6% in both circumferential and longitudinal stretch and a 50% maximum increase in von Mises stress at the sinus wall baroreceptor region. Device deployment has a minimal effect on blood-flow patterns, indicating that it does not adversely affect carotid bifurcation hemodynamics in the physiologic model. In the smaller carotid model, deployment of the device lowers wall shear stress at sinus by 16% while accelerating flow entering the external carotid artery branch. Our FSI simulations of carotid arteries with deployed device show that the device induces localized increase in wall stretch at the sinus, suggesting that this will activate baroreceptors and subsequently may control hypertension in drug-resistant hypertensive patients, with no consequential deleterious effects on the carotid sinus hemodynamics.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3