Using Weather and Schedule-Based Pattern Matching and Feature-Based Principal Component Analysis for Whole Building Fault Detection—Part I Development of the Method

Author:

Chen Yimin12,Wen Jin2,Lo James2

Affiliation:

1. Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720;

2. Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104

Abstract

Abstract A whole building fault (WBF) refers to a fault occurring in one component, but may cause impacts on other components or subsystems, or arise significant impacts on energy consumption and thermal comfort. Conventional methods (such as component level rule-based method or physical model-based method) which targeted at component level fault detection cannot be successfully used to detect a WBF because of the fault propagation among the closely coupled equipment or subsystems. Therefore, a novel data-driven method named weather and schedule-based pattern matching (WPM) and feature-based principal component analysis (FPCA) method for WBF detection is developed. Three processes are established in the WPM-FPCA method to address three main issues in WBF detection. First, a feature selection process is used to pre-select data measurements which represent a whole building’s operation performance under a satisfied status, namely, baseline status. Second, a WPM process is used to locate weather and schedule patterns in the historical baseline database, which are similar to that from the current/incoming operation data, and to generate a WPM baseline. Lastly, real-time PCA models are generated for both the WPM baseline data and the current operation data. Statistic thresholds used to differentiate normal and abnormal (faulty) operations are automatically generated in this PCA modeling process. The PCA models and thresholds are used to detect the WBF. This paper is the first of a two-part study. Performance evaluation of the developed method is conducted using data collected from a real campus building and will be described in the second part of this paper.

Funder

Building Technologies Program

Publisher

ASME International

Reference57 articles.

1. How Much Energy is Consumed in Residential and Commercial Buildings in the United States;EIA, U.S.,2021

2. Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part I;Katipamula;HVAC&R Res.,2005

3. Energy Impact of Commercial Building Controls and Performance Diagnostics: Market Characterization, Energy Impact of Building Faults and Energy Savings Potential;Roth,2005

4. A Review of Fault Detection and Diagnosis Methodologies on air-Handling Units;Yu;Energy Build.,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3