Simulation of Turbulent Airflow Using a CT Based Upper Airway Model of a Racehorse

Author:

Rakesh Vineet1,Datta Ashim K.1,Ducharme Normand G.2,Pease Anthony P.3

Affiliation:

1. Department of Biological and Environmental Engineering, Cornell University, 208 Riley Robb Hall, Ithaca, NY 14853

2. Department of Clinical Sciences, Cornell University, C2-528 Vet College, Ithaca, NY 14853

3. Department of Molecular Biomedical Sciences, North Carolina State University, Box 8401, NCSU Campus, Raleigh, NC 27606

Abstract

Computational model for airflow through the upper airway of a horse was developed. Previous flow models for human airway do not hold true for horses due to significant differences in anatomy and the high Reynolds number of flow in the equine airway. Moreover, models that simulate the entire respiratory cycle and emphasize on pressures inside the airway in relation to various anatomical diseases are lacking. The geometry of the airway was created by reconstructing images obtained from computed tomography scans of a thoroughbred racehorse. Different geometries for inhalation and exhalation were used for the model based on the difference in the nasopharynx size during the two phases of respiration. The Reynolds averaged Navier–Stokes equations were solved for the isothermal flow with the standard k-ϵ model for turbulence. Transient pressure boundary conditions for the entire breathing cycle were obtained from past experimental studies on live horses. The flow equations were solved in a commercial finite volume solver. The flow rates, computed based on the applied pressure conditions, were compared to experimentally measured flow rates for model validation. Detailed analysis of velocity, pressure, and turbulence characteristics of the flow was done. Velocity magnitudes at various slices during inhalation were found to be higher than corresponding velocity magnitudes during exhalation. The front and middle parts of the nasopharynx were found to have minimum intraluminal pressure in the airway during inhalation. During exhalation, the pressures in the soft palate were higher compared to those in the larynx, epiglottis, and nasopharynx. Turbulent kinetic energy was found to be maximum at the entry to the airway and gradually decreased as the flow moved inside the airway. However, turbulent kinetic energy increased in regions of the airway with abrupt change in area. Based on the analysis of pressure distribution at different sections of the airway, it was concluded that the front part of the nasopharynx requires maximum muscular activity to support it during inhalation. During exhalation, the soft palate is susceptible to displacements due to presence of high pressures. These can serve as critical information for diagnosis and treatment planning of diseases known to affect the soft palate and nasopharynx in horses, and can potentially be useful for human beings.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference43 articles.

1. The Measurement of Respiratory Airflow in Exercising Horses;Woakes

2. Measurement of Tracheal Static Pressure in Exercising Horses;Nielan;Vet. Surg.

3. Effect of Laryngeal Hemiplegia and Laryngoplasty on Airway Flow Mechanics in Exercising Horses;Derksen;Am. J. Vet. Res.

4. Analysis of Air-Flow Patterns in the Human Nose;Elad;Med. Biol. Eng. Comput.

5. Numerical Simulation of Airflow in the Human Nasal Cavity;Keyhani;J. Biomech. Eng.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3