Dissipation of Gravity Waves Due to Submerged Porous Plate Coupled With Porous Structures

Author:

Athul Krishna K. R.1,Abdulla Khansa2,Karmakar D.2

Affiliation:

1. National Institute of Technology Karnataka, Surathkal Department of Water Resources, and Ocean Engineering , Mangalore, Karnataka 575025 , India

2. National Institute of Technology Karnataka, Surathkal Department of Water Resources, and Ocean Engineering, , Mangalore, Karnataka 575025 , India

Abstract

Abstract The present study focuses on wave trapping due to the submerged horizontal porous plate combined with the bottom-standing porous structure and surface-piercing porous structure. The submerged plate thickness is considered to be negligible as compared to the incident wavelength and water depth, and the porous structure is considered to be of finite width. The study is performed based on the eigenfunction expansion method, and the wave interaction with the combined structure is investigated using the small amplitude wave theory. The orthogonal mode-coupling relation is used to analyze the wave interaction with the combined structure. The reflection, transmission, and dissipation coefficients along with wave force on the porous structure are investigated to analyze the hydrodynamic performance of the composite porous breakwater system. Further, the effect of porosity of submerged plate and structure, submergence depth of plate and structure, angle of incidence, and the submerged plate length are investigated to analyze the effective wave dissipation by the composite breakwater. In addition, the comparative study of the numerical method is performed with the results available in the literature. The study noted that the wave damping due to the submerged porous plate backed by surface-piercing porous structure is more as compared to the submerged porous plate backed by the bottom-standing porous structure. The study performed will be helpful to scientists and engineers in the design of suitable composite breakwater systems and also assists in selecting the best structural configuration for attenuation of wave height and to protect the offshore facility from high waves in the coastal region.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3