Optimal Management of Reversible Heat Pump/Organic Rankine Cycle Carnot Batteries

Author:

Torricelli Noemi1,Branchini Lisa1,De Pascale Andrea1,Dumont Olivier2,Lemort Vincent2

Affiliation:

1. Department of Industrial Engineering DIN, University of Bologna , Bologna 40126, Italy

2. Thermodynamics Laboratory, University of Liege , Liege 40126, Belgium

Abstract

Abstract In the view of reducing the global greenhouse gas emissions, it becomes fundamental to exploit the renewable energy sources at their maximum potential by developing effective strategies for their flexible use. Among the available solutions to realize these strategies are the electric energy storage including the innovative pumped thermal energy storage technology (included in the Carnot battery concept). This can become very interesting in these applications where different energy flows must be handled (both electric and thermal), thanks to the possibility of adding the contribution of a waste heat source, in a thermally integrated energy storage. However, despite the several advantages, the state-of-the-art still lacks experiments and investigation of efficient control strategy for the Carnot battery when inserted into the process. As an original contribution to the current literature, this paper presents the off-design model of a reversible organic Rankine cycle (ORC)/heat pump (HP) Carnot battery configuration with the aim of employing it to simulate the performance of such system and discuss its optimal management when inserted into a generic process. An existing reversible HP/ORC kW-size prototype is considered as reference and its optimal control in both HP and ORC mode under different boundary conditions is assessed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3