Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (AR=4:1)

Author:

Wright Lesley M.1,Fu Wen-Lung1,Han Je-Chin1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

Abstract

An experimental study was performed to measure the heat transfer distributions and frictional losses in rotating ribbed channels with an aspect ratio of 4:1. Angled, discrete angled, V-shaped, and discrete V-shaped ribs were investigated, as well as the newly proposed W-shaped and discrete W-shaped ribs. In all cases, the ribs are placed on both the leading and trailing surfaces of the channel, and they are oriented 45 deg to the mainstream flow. The rib height-to-hydraulic diameter ratio e/D is 0.078, and the rib pitch-to-height ratio P/e is 10. The channel orientation with respect to the direction of rotation is 135 deg. The range of flow parameters includes Reynolds number (Re=10,000–40,000), rotation number Ro=0.0-0.15, and inlet coolant-to-wall density ratio (Δρ/ρ=0.12). Both heat transfer and pressure measurements were taken, so the overall performance of each rib configuration could be evaluated. It was determined that the W-shaped and discrete W-shaped ribs had the superior heat transfer performance in both nonrotating and rotating channels. However, these two configurations also incurred the greatest frictional losses while the discrete V-shaped and discrete angled ribs resulted in the lowest pressure drop. Based on the heat transfer enhancement and the pressure drop penalty, the discrete V-shaped ribs and the discrete W-shaped ribs exhibit the best overall thermal performance in both rotating and nonrotating channels. These configurations are followed closely by the W-shaped ribs. The angled rib configuration resulted in the worst performance of the six configurations of the present study.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3