Simulations Based on Product-Usage Information From Connected Products to Support Redesign for Improved Performance: Exploration of Practical Application to Domestic Fridge-Freezers

Author:

van der Vegte Wilhelm Frederik1,Kurt Fatih2,Şengöz Oğuz Kerem2

Affiliation:

1. Delft University of Technology, Delft 2600AA, The Netherlands; Faculty of Industrial Design Engineering, Landbergstraat 15, Delft 2628 CE, The Netherlands e-mail:

2. Arçelik A.Ş., Istanbul 34445, Turkey

Abstract

The real-life use of a product is often hard to foresee during its development. Fortunately, today's connective products offer the opportunity to collect information about user actions, which enables companies to investigate the actual use for the benefit of next-generation products. A promising application opportunity is to input the information to engineering simulations and increase their realism to (i) reveal how use-related phenomena influence product performance and (ii) to evaluate design variations on how they succeed in coping with real users and their behaviors. In this article, we explore time-stamped usage data from connected fridge-freezers by investigating energy losses caused by door openings and by evaluating control-related design variations aimed at mitigating these effects. By using a fast-executing simulation setup, we could simulate much faster than real time and investigate usage over a longer time. We showed that a simple, single-cycle load pattern based on aggregated input data can be simulated even faster but only produce rough estimates of the outcomes. Our model was devised to explore application potential rather than producing the most accurate predictions. Subject to this reservation, our outcomes indicate that door openings do not affect energy consumption as much as some literature suggests. Through what-if studies we could evaluate three design variations and nevertheless point out that particular solution elements resulted in more energy-efficient ways of dealing with door openings. Based on our findings, we discuss possible impacts on product design practice for companies seeking to collect and exploit usage data from connected products in combination with simulations.

Funder

Horizon 2020 Framework Programme

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3