Generative Design of a Gas Turbine Combustor Using Invertible Neural Networks

Author:

Krueger Patrick1,Gottschalk Hanno1,Werdelmann Bastian2,Krebs Werner2

Affiliation:

1. Department of Mathematics, Technical University of Berlin , Straße des 17. Juni 135, Berlin 10623, Germany

2. Sienmens Energy , Rheinstraße 100, Mühlheim an der Ruhr, NRW 45478, Germany

Abstract

Abstract The need to burn 100% H2 in high efficient gas turbines featuring low NOx combustion in premix mode requires the complete redesign of the combustion system to ensure stable operation without any flashback. Since all engine frames featuring a power range from 4 MW up to 600 MW are affected, a huge design effort is expected. To reduce this effort, especially to transfer knowledge between the different engine classes, generative design methods using latest AI technology will provide promising potential. In this work, this challenge is approached utilizing the current advances in generative artificial intelligence. We train an invertible neural network (INN) on an expandable database of geometrically parameterized combustor designs with simulated performance labels. Utilizing the INN in its inverse direction, multiple design proposals are generated, which fulfill specified performance labels.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

ASME International

Reference34 articles.

1. Advanced Combustion System for High Efficiency (ACE) of the New SGT5/6-9000HL Gas Turbine,2022

2. Development of a Fuel Flexible H2-Natural Gas Turbine Combustion Technology Platform,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3