Impact on Ceramic Targets

Author:

Mayseless M.1,Goldsmith W.1,Virostek S. P.1,Finnegan S. A.2

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

2. Engineering Science Division, US Naval Weapons Center, China Lake, CA 93555

Abstract

A series of approximately 150 tests were conducted on ceramic targets struck by cylindro-conical hard-steel projectiles at normal incidence up to velocities of about 1000 m/s. The primary objective was the determination of the effect of layering and the delineation of the ballistic limit of various combinations. In addition, a study of the erosive effect of the ceramic was executed. It was found that, on the basis of areal density, metal plates prefaced by ceramic materials are ballistically more inefficient than purely metallic targets in the low velocity range, while the reverse was found at speeds above 250 m/s. The eroded length was found to be related to the velocity of the projectile and the thickness of the ceramic layer. The projectile displacement data were found to be in very good accord with the results obtained from a previously utilized analytic force history taking into account the erosion process. The energy required to erode the projectile was found to be several orders of magnitude greater than that consumed in the fracture process of the frontal ceramic plate.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3