On the Influence of Piston and Cylinder Density in Tribodynamics of a Radial Piston Digital Fluid Power Displacement Motor

Author:

Johansen Per1,Roemer Daniel B.1,Andersen Torben O.1,Pedersen Henrik C.1

Affiliation:

1. Aalborg University, Aalborg East, Denmark

Abstract

In the past three decades an increasing amount of research has been performed in the field of tribodynamics of fluid power pumps and motors. The main incentives for this research are optimization of reliability and efficiency through the study of loss and wear mechanisms. These mechanisms are very difficult to study experimentally, whereby modeling and simulation are necessary. The modeling of tribodynamics is a multiphysics problem involving multibody dynamics, fluid mechanics, thermodynamics and solid mechanics. Consequently, the simulation durations can easily become impractical for parametric analysis or optimization. The coupling between multibody dynamics and fluid mechanics depend on the formulation of the solid body motion equations, where two approaches have historically been used. One approach is where the external forces on any lubricated joint are balanced by the fluid forces, such that solid body inertia is neglected. The other approach includes the inertia terms in the calculation of microdynamics. The inclusion of inertia terms entails a need for smaller time steps in comparison to the force balance approach, wherefore it is of interest to analyze the influence of the inertia term. In this paper the influence of the inertia term on the lubrication gaps of a radial piston motor are studied by a parametric analysis of the piston and cylinder density in a multibody tribodynamic simulation model. The motor is modeled as a digital fluid power displacement machine and a series of full-stroke displacement simulations are used as basis for the parametric analysis. From the parametric analysis a change, in the minimum film thickness as function of piston and cylinder density, is shown for certain operating modes of the digital fluid power displacement motor. This indicate a need for careful assessment of the applicability, of the force balance condition, if it is used in multibody tribodynamic simulations of radial piston digital fluid power displacement motors.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive ultrasound reflectometry for lubrication film thickness measurements;Measurement Science and Technology;2019-11-18

2. Challenges with Respect to Control of Digital Displacement Hydraulic Units;Modeling, Identification and Control: A Norwegian Research Bulletin;2018

3. Spectrum Estimation in Autocalibration of Ultrasonic Reflectometry Methods for Lubrication Film Thickness Measurements;Proceedings of the 6th International Conference on Control, Mechatronics and Automation - ICCMA 2018;2018

4. Layer ToF Methods for Ultrasonic Lubrication-film Thickness Measurements;Proceedings of the 6th International Conference on Control, Mechatronics and Automation - ICCMA 2018;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3