One-Equation Near-Wall Turbulence Modeling With the Aid of Direct Simulation Data

Author:

Rodi W.1,Mansour N. N.2,Michelassi V.3

Affiliation:

1. University of Karlsruhe, Karlsruhe, Germany

2. NASA Ames Research Center, Moffett Field, CA 94035

3. University of Florence, Florence, Italy

Abstract

The length scales appearing in the relations for the eddy viscosity and dissipation rate in one-equation models were evaluated from direct numerical (DNS) simulation data for developed channel and boundary-layer flow at two Reynolds numbers each. To prepare the ground for the evaluation, the distribution of the most relevant mean-flow and turbulence quantities is presented and discussed, also with respect to Reynolds-number influence and to differences between channel and boundary-layer flow. An alternative model is examined in which (v′2)1/2 is used as velocity scale instead of k1/2. With this velocity scale, the length scales now appearing in the model follow closely a linear relationship near the wall. The resulting length-scale relations together with a DNS based relation between v′2/k and y* = k1/2y/v form a new one-equation model for use in near-wall regions. The new model was tested as near wall component of a two-layer model by application to developed-channel, boundary-layer and backward-facing-step flows.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3