Affiliation:
1. The University of Michigan, Ann Arbor, MI
2. General Motors R&D Center, Warren, MI
Abstract
Automotive battery packs for electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid electric vehicles (PHEV) typically consist of a large number of battery cells. These cells must be assembled together with robust mechanical and electrical joints. Joining of battery cells presents several challenges such as welding of highly conductive and dissimilar materials, multiple sheets joining, and varying material thickness combinations. In addition, different cell types and pack configurations have implications for battery joining methods. This paper provides a comprehensive review of joining technologies and processes for automotive lithium-ion battery manufacturing. It details the advantages and disadvantages of the joining technologies as related to battery manufacturing, including resistance welding, laser welding, ultrasonic welding and mechanical joining, and discusses corresponding manufacturing issues. Joining processes for electrode-to-tab, tab-to-tab (tab-to-bus bar), and module-to-module assembly are discussed with respect to cell types and pack configuration.
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献