Affiliation:
1. Politecnico di Milano, Milan, Italy
2. Ansaldo Ricerche, Genova, Italy
Abstract
Externally Fired Combined Cycles (EFCC) are one of the options allowing the use of “dirty” fuels like coal, biomass or waste in conjunction with modern, high efficiency gas turbines. The plant concept comprises an indirect-contact ceramic heat exchanger where compressed air exiting the gas turbine compressor is heated by hot combustion gases; the combustor is placed downstream the turbine and operates at nearly atmospheric pressure.
From a thermodynamic standpoint, the cycle is equivalent to a combined cycle with supplementary firing. Attainable efficiencies are higher than those achievable by steam cycles (even the most advanced ultra-supercritical), as well as those of most other coal-based technologies (PFBC and IGCC). These efficiency advantages must be weighted against the uncertainty (and risk) of the realization of high temperature ceramic heat exchangers, and the challenges for the design of the combustor.
This two-part paper discusses thermodynamic, technological and economic issues crucial to the success of EFCCs, both for large scale utility service (3–400 MWe1 and more) and for medium/low scale applications (down to 30–50 MWe1). Part A addresses the most relevant thermodynamic and technological issues, performing comparisons with the technologies which will presumably dominate the coal-based power generation market of the next century.
Publisher
American Society of Mechanical Engineers
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献