Externally Fired Combined Cycles (EFCC): Part A — Thermodynamics and Technological Issues

Author:

Consonni Stefano1,Macchi Ennio1,Farina Francesco2

Affiliation:

1. Politecnico di Milano, Milan, Italy

2. Ansaldo Ricerche, Genova, Italy

Abstract

Externally Fired Combined Cycles (EFCC) are one of the options allowing the use of “dirty” fuels like coal, biomass or waste in conjunction with modern, high efficiency gas turbines. The plant concept comprises an indirect-contact ceramic heat exchanger where compressed air exiting the gas turbine compressor is heated by hot combustion gases; the combustor is placed downstream the turbine and operates at nearly atmospheric pressure. From a thermodynamic standpoint, the cycle is equivalent to a combined cycle with supplementary firing. Attainable efficiencies are higher than those achievable by steam cycles (even the most advanced ultra-supercritical), as well as those of most other coal-based technologies (PFBC and IGCC). These efficiency advantages must be weighted against the uncertainty (and risk) of the realization of high temperature ceramic heat exchangers, and the challenges for the design of the combustor. This two-part paper discusses thermodynamic, technological and economic issues crucial to the success of EFCCs, both for large scale utility service (3–400 MWe1 and more) and for medium/low scale applications (down to 30–50 MWe1). Part A addresses the most relevant thermodynamic and technological issues, performing comparisons with the technologies which will presumably dominate the coal-based power generation market of the next century.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3