Reactive Gait Composition with Stability: Dynamic Walking Amidst Static and Moving Obstacles

Author:

Narkhede Kunal Sanjay1,Shafiee Motahar Mohamad2,Veer Sushant3,Poulakakis Ioannis1

Affiliation:

1. University of Delaware Department of Mechanical Engineering Newark, DE 19716

2. ThermoFisher Scientific Hillsboro, OR 97124

3. NVIDIA Research Santa Clara, CA 95051

Abstract

Abstract This paper presents a modular approach to motion planning with provable stability guarantees for robots that move through changing environments via periodic locomotion behaviors. We focus on dynamic walkers as a paradigm for such systems, although the tools developed in this paper can be used to support general compositional approaches to robot motion planning with Dynamic Movement Primitives (DMPs). By formulating the planning process as a Switching System with Multiple Equilibria (SSME) we prove that the system's evolution remains within explicitly characterized trapping regions in the state space under suitable constraints on the frequency of switching among the DMPs. These conditions encapsulate the low-level stability limitations in a form that can be easily communicated to the planner. Furthermore, we show how the available primitives can be safely composed online in a receding horizon manner to enable the robot to react to moving obstacles. The proposed framework can be applied in a wide class of 3D bipedal walking models, and offers a modular approach for integrating readily available low-level locomotion control and high-level planning methods.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overtaking Moving Obstacles with Digit: Path Following for Bipedal Robots via Model Predictive Contouring Control;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3