Event-Triggered Model-Free Adaptive Control for Wheeled Mobile Robot With Time Delay and External Disturbance Based on Discrete-Time Extended State Observer

Author:

Huang Jiahui1,Chen Hua1,Shen Chao1

Affiliation:

1. School of Mathematics, Hohai University , Nanjing 211100, China

Abstract

Abstract In this paper, an improved model-free adaptive control strategy is proposed for the trajectory tracking problem of the wheeled mobile robot (WMR) with time-delay and bounded disturbance. Firstly, the original nonlinear time delay system is transformed into a data model by applying the full-form dynamic linearization method (FFDL). Secondly, the discrete-time extended state observer (DESO) is applied to estimate the unknown residual nonlinear time-varying term. A full-form dynamic linearization model-free adaptive control scheme based on discrete-time extended state observer (DESO-based FFDL MFAC) is proposed. In addition, a full-form dynamic linearization event-triggered model-free adaptive control based on discrete-time extended state observer (DESO-based FFDL ET-MFAC) is established by designing an event-triggering condition to assure Lyapunov stability. The control input signal is updated only if the system indicator meets the provided event-triggering condition; otherwise, the control input remains unchanged which can address limited communication bandwidth effectively. Finally, the effectiveness of the proposed method is verified by simulation.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Overview of Model-Free Adaptive Control for the Wheeled Mobile Robot;World Electric Vehicle Journal;2024-08-29

2. Analyzing the LMS Weight Error Covariance Matrix: An Exact Expectation Approach;Circuits, Systems, and Signal Processing;2024-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3