Numerical Modeling of Head-Related Transfer Functions Using the Boundary Source Representation

Author:

Bai Mingsian R.1,Tsao Teng-Chieh1

Affiliation:

1. Department of Mechanical Engineering, National Chiao-Tung University, 1001 Ta-Hsueh Road, Hsin-Chu 300 Taiwan, Republic of China

Abstract

Abstract A technique based on the virtual source representation is presented for modeling head-related transfer functions (HRTFs). This method is motivated by the theory of simple layer potential and the principle of wave superposition. Using the virtual source representation, the HRTFs for a human head with pinnae are calculated with a minimal amount of computation. In the process, a special regularization scheme is required to calculate the equivalent strengths of virtual sources. To justify the proposed method, tests were carried out to compare the virtual source method with the boundary element method (BEM) and a direct HRTF measurement. The HRTFs obtained using the virtual source method agrees reasonably well in terms of frequency response, directional response, and impulse response with the other methods. From the numerical perspectives, the virtual source method obviates the singularity problem as commonly encountered in the BEM, and is less computationally demanding than the BEM in terms of computational time and memory storage. Subjective experiments are also conducted using the calculated and the measured HRTFs. The results reveal that the spatial characteristics of sound localization are satisfactorily reproduced as a human listener would naturally perceive by using the virtual source HRTFs.

Publisher

ASME International

Subject

General Engineering

Reference20 articles.

1. HRTF Measurements of a KEMAR;Gardner;J. Acoust. Soc. Am.

2. The CIPIC HRTF Database;Algazi

3. The Role of the Pinna in Human Localization;Batteau;Proc. R. Soc. London

4. A Structural Model for Binaural Sound Synthesis;Brown;IEEE Trans. Speech Audio Process.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing piezoelectric panel speakers using the simulated annealing algorithm;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2010-09-10

2. Spatial Distribution Prediction of Steady-State Sound Field With the Ray-Tracing Method;Journal of Vibration and Acoustics;2008-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3