A Piecewise-Linear Approximation of the Canonical Spring-Loaded Inverted Pendulum Model of Legged Locomotion

Author:

Shen Zhuohua1,Seipel Justin1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906 e-mail:

Abstract

Here, we introduce and analyze a novel approximation of the well-established and widely used spring-loaded inverted pendulum (SLIP) model of legged locomotion, which has made several validated predictions of the center-of-mass (CoM) or point-mass motions of animal and robot running. Due to nonlinear stance equations in the existing SLIP model, many linear-based systems theories, analytical tools, and corresponding control strategies cannot be readily applied. In order to provide a significant simplification in the use and analysis of the SLIP model of locomotion, here we develop a novel piecewise-linear, time-invariant approximation. We show that a piecewise-linear system, with the only nonlinearity due to the switching event between stance and flight phases, can predict all the bifurcation features of the established nonlinear SLIP model over the entire three-dimensional model parameter space. Rather than precisely fitting only one particular solution, this approximation is made to quantitatively approximate the entire solution space of the SLIP model and capture all key aspects of solution bifurcation behavior and parametric sensitivity of the original SLIP model. Further, we provide an entirely closed-form solution for the stance trajectory as well as the system states at the end of stance, in terms of common functions that are easy to code and compute. Overall, the closed-form solution is found to be significantly faster than numerical integration when implemented using both matlab and c++. We also provide a closed-form analytical stride map, which is a Poincaré return section from touchdown (TD) to next TD event. This is the simplest closed-form approximate stride mapping yet developed for the SLIP model, enabling ease of analysis and numerical coding, and reducing computational time. The approximate piecewise-linear SLIP model presented here is a significant simplification over previous SLIP-based models and could enable more rapid development of legged locomotion theory, numerical simulations, and controllers.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference62 articles.

1. The Spring–Mass Model for Running and Hopping;J. Biomech.,1989

2. Similarity in Multilegged Locomotion: Bouncing Like a Monopode;J. Comp. Physiol., A,1993

3. The Dynamics of Legged Locomotion: Models, Analyses, and Challenges;SIAM Rev.,2006

4. The Spring–Mass Model and the Energy Cost of Treadmill Running;Eur. J. Appl. Physiol. Occup. Physiol.,1998

5. Mechanics of Locomotion;Int. J. Rob. Res.,1984

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perturbation-based approximate analytic solutions to an articulated SLIP model for legged robots;Communications in Nonlinear Science and Numerical Simulation;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3