Evaluation of Soft Mist Inhaler Aerosol Velocity, Size, and Deposition Inside the Mouth—A Computational Fluid Dynamics Study

Author:

Sadeghi Taha1,Pakzad Leila1,Fatehi Pedram1

Affiliation:

1. Department of Chemical Engineering, Lakehead University , 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada

Abstract

AbstractRespiratory diseases debilitate more than 250 million people around the world. Among available inhalation devices, the soft mist inhaler (SMI) is the most efficient at delivering drugs to ease respiratory disease symptoms. In this study, we analyzed the SMI performance in terms of the aerosol's velocity profiles, flow pattern, size distribution, and deposition by employing computational fluid dynamics (CFD) simulations. We modeled two different simplified mouth geometries, idealized mouth (IM), and standard mouth (SM). Three different locations (x = 0, x = 5, and x = 10 mm) for the SMI nozzle orifice were chosen along the mouth cavity centerlines, followed by two different SMI nozzle angles (10 deg and 20 deg) for IM geometry. A flowrate of 30 L/min was applied. The simulation results were evaluated against experimental data. It was found that the SMI could be simulated successfully with a level of error of less than 10%. The inhalation flowrate significantly impacted the aerosol's velocity profile and deposition efficiency on both the IM and SM walls. The lowest particle deposition on the mouth wall occurred when a fixed flowrate (30 L/min) was applied inside both geometries, and the SMI nozzle position moved forward to x = 10 mm from the IM and SM inlets. An increase in the SMI nozzle angle increased particle deposition and decreased the deposition fraction for particles with a diameter above 5 μm inside the IM.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference66 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3