Optimization of Inflow Waveform Phase-Difference for Minimized Total Cavopulmonary Power Loss

Author:

Dur Onur1,DeGroff Curt G.2,Keller Bradley B.3,Pekkan Kerem4

Affiliation:

1. Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15219

2. Congenital Heart Center, University of Florida, Gainesville, FL 32610

3. Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202

4. Department of Biomedical Engineering, and Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15219

Abstract

The Fontan operation is a palliative surgical procedure performed on children, born with congenital heart defects that have yielded only a single functioning ventricle. The total cavo-pulmonary connection (TCPC) is a common variant of the Fontan procedure, where the superior vena cava (SVC) and inferior vena cava (IVC) are routed directly into the pulmonary arteries (PA). Due to the limited pumping energy available, optimized hemodynamics, in turn, minimized power loss, inside the TCPC pathway is required for the best optimal surgical outcomes. To complement ongoing efforts to optimize the anatomical geometric design of the surgical Fontan templates, here, we focused on the characterization of power loss changes due to the temporal variations in between SVC and IVC flow waveforms. An experimentally validated pulsatile computational fluid dynamics solver is used to quantify the effect of phase-shift between SVC and IVC inflow waveforms and amplitudes on internal energy dissipation. The unsteady hemodynamics of two standard idealized TCPC geometries are presented, incorporating patient-specific real-time PC-MRI flow waveforms of “functional” Fontan patients. The effects of respiration and pulsatility on the internal energy dissipation of the TCPC pathway are analyzed. Optimization of phase-shift between caval flows is shown to lead to lower energy dissipation up to 30% in these idealized models. For physiological patient-specific caval waveforms, the power loss is reduced significantly (up to 11%) by the optimization of all three major harmonics at the same mean pathway flow (3 L/min). Thus, the hemodynamic efficiency of single ventricle circuits is influenced strongly by the caval flow waveform quality, which is regulated through respiratory dependent physiological pathways. The proposed patient-specific waveform optimization protocol may potentially inspire new therapeutic applications to aid postoperative hemodynamics and improve the well being of the Fontan patients.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3