Dynamic Processes in Structural Thermo-Viscoplasticity

Author:

Irschik Hans1,Ziegler Franz2

Affiliation:

1. Institut fu¨r Technische Mechanik und Grundlagen der Maschinenlehre, Johannes-Kepler-University Linz, A-4040 Linz-Auhof, Austria

2. Civil Engineering Department, Tech University Vienna, Wiedner Hauptstr 8-10/E 201, A-1040 Vienna, Austria

Abstract

A multiple field theory dates back to developments in linear thermo-elasticity where the thermal strain is considered to be imposed on the linear elastic background structure in an isothermal state. Load strain and thermal strain fields are coupled by the boundary conditions or exhibit volume coupling. Taking into account a proper auxiliary problem, eg, the structure loaded by a unit force under isothermal conditions, results in Maysel’s formula and thus represents the solution in an optimal manner. That approach was generalized to dynamic problems and its efficiency was enhanced by splitting the solution in the quasi-static part and in the dynamic part thus considering the inertia of mass in the latter portion. This paper reviews recent extensions of such a multiple field theory to nonlinear problems of structural thermo-viscoplasticity. Their basis is given in formulations of micromechanics. In an incremental setting, the inelastic strains enter the background material as a second imposed strain field. Considering the rate form of the generalized Hooke’s law such a three-field representation is identified by inspection. Geometric nonlinearity is not fully taken into account, only approximations based on a second order theory, and, for beams and plates with immovable boundaries, in Berger’s approximation, render a third “strain field” to be imposed on the linearized background structure. A novel derivation of the dynamic generalization of Maysel’s formula is given in the paper. An elastic-viscoplastic semi-infinite impacted rod serves as the illustrative example of the fully dynamic analysis in the multiple field approach. Ductile damage is taken into account and the dissipated energy is deposited under adiabatic conditions. Material parameters are considered temperature dependent. An extension to a finite element discretization of the background structure seems to be possible, when preserving the solely linear elastic solution technique. Quite naturally, the domain integral boundary element method of solution results from such a multiple field approach.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3