Transient Heat Transfer in Extended Surfaces

Author:

Aziz A.1,Kraus Allan D.2

Affiliation:

1. Department of Mechanical Engineering, Gonzaga University, Spokane, WA 99258

2. Department of Electrical and Computer Engineering, Naval Postgraduate School, Monterey, CA 93943

Abstract

This paper attempts to provide a comprehensive, coherent, and methodical review of the existing literature on the transient performance of extended surfaces (fins). With the exception of very few experimental studies, the work described is theoretical involving either analytical approaches or numerical computations. For both longitudinal and radial convecting fins, the shapes analyzed include fins of rectangular, trapezoidal, concave parabolic, and convex parabolic profiles. The boundary conditions considered are those of time-dependent base temperature or time-dependent base heat flow, or time-dependent temperature of the fluid on the unfinned side of the primary surface. Other studies discussed consider the transient responses of radiating and convecting-radiating fins, fins with stochastic base temperature and fins in which conduction, natural convection, and radiation are coupled. The paper also provides an in-depth consideration of two-dimensional analyses of a cylindrical spine (pin fin) and a composite longitudinal fin. All of the important results pertaining to the transient effect in extended surfaces are presented and these effects are illustrated with several examples. The paper concludes with an attempt to identify future investigative efforts.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Residence time method for the analysis of a model cooling process with noise;Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India;2024

2. Thermal wave propagation in a functionally graded annular fin with fixed base;Waves in Random and Complex Media;2021-05-13

3. Bio-Heat Models Revisited: Concepts, Derivations, Nondimensalization and Fractionalization Approaches;Frontiers in Physics;2019-11-21

4. Transient Formulations for a Heat-Generating Fin with a Temperature-Dependent Heat Transfer Coefficient and Thermal Conductivity;Advances in Theoretical & Computational Physics;2019-05-29

5. A novel one-dimensional model to predict fin efficiency of continuous fin-tube heat exchangers;Applied Thermal Engineering;2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3