Flow Behavior in Radial Vane Disk Brake Rotors at Low Rotational Speeds

Author:

Atkins Michael D.1,Kienhöfer Frank W.1,Kim Tongbeum1

Affiliation:

1. School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg 2000, South Africa e-mail:

Abstract

The flow behavior through the vented channel of a brake disk determines its thermal performance, viz. its resistance to brake fade, brake wear, thermal distortion, and thermal cracking. We present experimental results of the flow characteristics inside the vented channel of a radial vane brake rotor with a selected number of vanes (i.e., 18, 36, and 72) but constant porosity (ε ∼ 0.8) at low rotational speeds (i.e., 25 rpm ≤ N ≤ 400 rpm). Using bulk flow and velocity field mapping measurement techniques, we observed that increasing the number of vanes for a given rotational speed results in (i) the increase in the mass flow rate of the air pumped by the rotor, (ii) the reduction of inflow angle (β) becoming more closely aligned with the vanes, (iii) more uniformly distributed passage velocity profiles, and (iv) increased Rossby number. In addition, for a certain range of rotational speeds (i.e., 100 rpm ≤ N ≤ 400 rpm), we identified the biased development of streamwise secondary flow structures in the vented passages that only form on the inboard side of the rotor. This is due to the entry conditions where the incoming flow must transition sharply from the axial to the radial direction as air is drawn into the rotating channel. The biased secondary flow is likely to cause uneven cooling of the brake rotor, leading to thermal distortion. At lower rotational speeds (i.e., N < 100 rpm), the biased secondary flows transitions into a symmetric structure.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigations on mass flow rate of rotary vane feeder for direct metal laser deposition;Progress in Additive Manufacturing;2024-04-16

2. A Combined Experimental and Numerical Analysis on the Aerodynamics of a Carbon-Ceramic Brake Disc;SAE International Journal of Passenger Vehicle Systems;2024-01-04

3. Pressure exertion and heat dissipation analysis on uncoated and ceramic (Al2O3, TiO2 and ZrO2) coated braking pads;Materials Today: Proceedings;2023

4. Flow behaviour in vented brake discs with straight and airfoil-shaped radial vanes;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-12-23

5. Heat dissipation optimization of ventilated brake disc recirculation zone based on NSGA-II algorithm;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3