Affiliation:
1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
Abstract
The issue of environmental sustainability, which is unprecedented in both magnitude and complexity, presents one of the biggest challenges faced by modern society. Design engineers can make significant contributions by incorporating environmental awareness into product and process development. It is critical that engineers make a paradigm shift in product design from centering on cost and performance to balancing economic, environmental, and societal considerations. Although there have been quite a few designs for environment (or ecodesign) tools developed, so far, these tools have only achieved limited industrial penetration. The present-day methods are either too qualitative to offer concrete solutions and not effective for designers with limited experience or too quantitative, costly, and time consuming. Thus, current ecodesign tools cannot be implemented during the early design phases. This paper develops a novel, semiquantitative ecodesign methodology that is targeted specifically toward the early stages of the design process. The new methodology is a combination of environmental life cycle assessment and visual tools such as quality function deployment, functional-component matrix, and Pugh chart. Since the early design process is function-oriented, a new visual tool called the function impact matrix has been developed to correlate environmental impacts with product function. Redesign of office staplers for reduced carbon footprint has been selected as a case study to demonstrate the use of the proposed approach. Life cycle assessment results confirm that the new stapler design generated using this methodology promotes improved environmental performance.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献