Affiliation:
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Abstract
This paper derives a general solution of the three-dimensional equations of transversely isotropic piezothermoelastic materials (crystal class, 6 mm). Two displacement functions are first introduced to simplify the basic equations and a general solution is then derived using the operator theory. For the static case, the proposed general solution is very simple in form and can be used easily in certain boundary value problems. An illustrative example is given in the paper by considering the symmetric crack problem of an arbitrary temperature applied over the faces of a flat crack in an infinite space. The governing integro-differential equations of the problem are derived. It is found that exact expressions for the piezothermoelastic field for a penny-shaped crack subject to a uniform temperature can be obtained in terms of elementary functions. [S0021-8936(00)01704-9]
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献