Study on Controllable Thickness and Flatness of Wafer-Scale Nickel Shim in Precision Electroforming Process: Simulation and Validation

Author:

Zhang Honggang1,Zhang Nan1,Fang Fengzhou23

Affiliation:

1. Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin 4, Ireland

2. Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin 4, Ireland;

3. State Key Laboratory of Precision Measuring Technology and Instruments, Centre of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin 300072, China

Abstract

Abstract A new approach to precision electroforming of a wafer scale nickel shim using a rotating cathode with an auxiliary cathode mask is developed to improve thickness uniformity and flatness. The effects of critical process parameters, including cathode rotating speed, cathode mask size, and current density, on the thickness uniformity and flatness of electroformed nickel shim are systematically studied based on experiments and simulations. The results show that the thickness uniformity of the deposits is highly dependent on the current density distribution, where a cathode mask can effectively tune electrical field lines and induce a more uniform current density distribution. The simulations and experimental results consistently agree that a minimum thickness nonuniformity of 8% and below 1% on the wafer with a diameter of 80 mm and 40 mm, respectively, can be achieved using a mask with a 70 mm opening size. However, for flatness, the cathode rotating speed influences the surface warpage due to the intrinsic stress. It is also found that the gradient current density can significantly reduce the intrinsic stress with better flatness. The best flatness is controlled below 47 µm and 32 µm on the wafer with diameters of 80 mm and 40 mm, respectively, under the synergistic effect of optimal cathode rotating speed (30 rpm) and gradient current density.

Funder

Ministry of Education of the People's Republic of China

National Natural Science Foundation of China

Science Foundation Ireland

State Administration of Foreign Experts Affairs

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3