Part-Load Strategy Definition and Preliminary Annual Simulation for Small Size sCO2-Based Pulverized Coal Power Plant

Author:

Alfani Dario1,Astolfi Marco1,Binotti Marco1,Silva Paolo1

Affiliation:

1. Department of Energy, Politecnico di Milano, via Lambruschini 4a, Milano 20156, Italy

Abstract

Abstract In the near future, due to the growing share of variable renewable energy in the electricity mix and the lack of large-scale electricity storage, coal plants will have to shift their role from base-load operation to providing fluctuating back-up power. However, current coal power plants, based on steam Rankine cycle, are not optimized for flexible part-load operation, resulting in an intrinsic inadequacy for fast load variations. The founding idea of the H2020 sCO2-Flex project is to improve the flexibility of pulverized coal power plants by adopting supercritical CO2 Brayton power cycles. Despite the extensive literature about the design of sCO2 plants, there is still limited discussion about the strategies to be implemented to maximize system efficiency during part-load operation. This paper aims to provide deeper insight about the potential of sCO2 power plants based on recompressed cycle with high-temperature recuperator (HTR) bypass configuration for small modular coal power plants (25 MWel). Analysis focuses on both design and part-load operation providing a preliminary sizing of each component and comparing different operating strategies. Results demonstrate that sCO2 coal power plants can achieve competitive efficiency in both nominal and part-load operation thanks to the progressive increase of heat exchangers effectiveness. Moreover, they can be operated down to 20% electric load increasing power range of coal plants. Finally, the possibility to optimize the cycle minimum pressure ensures a safe operation of the compressor far from the surge line and to increase the performance at low load.

Funder

Horizon 2020 Framework Programme

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference29 articles.

1. sCO2-Flex

2. Comparison Between ORC and CO2 Power Systems for the Exploitation of Low-Medium Temperature Heat Sources;Energy,2018

3. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications;Energy Procedia,2014

4. SCO2 Closed Brayton Cycle for Coal-Fired Power Plant;Second European Supercritical CO2 Conference,2018

5. Real Gas Effects in Carbon Dioxide Cycles,1969

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3