Application of Multi Parameter Path Length Method for Resilience (MP-PLMR) to Engineering Systems

Author:

Prasad Mahendra1,Gopika V.1,Andrews John2

Affiliation:

1. Bhabha Atomic Research Centre , Mumbai 400 085, India

2. University of Nottingham , Nottingham NG7 2RD, UK

Abstract

Abstract Multi-parameter-path length method for resilience (MP-PLMR) has been proposed to determine the resilience of system multiparameter considerations. It was applied to two engineering situations: (i) Passive catalytic device for hydrogen management in nuclear power plant (NPP) and (ii) Engineered systems for hydrogen mitigation in NPP. The method involves normalizations of the system parameters, the time domain and correlation coefficient across the parameters. The path length for the transient was defined using all the parameters and their correlations. The resilience value in the two case studies depended on the number of parameters considered and correlations. System resilience without the consideration of correlation was also estimated. The difference between the correlated and uncorrelated resilience was significant. While there is no established metric against which the calculated values could be compared, these values can be used to define system effectiveness in conjunction with reliability of systems.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3