Flow Studies in Canine Artery Bifurcations Using a Numerical Simulation Method

Author:

Xu X. Y.1,Collins M. W.1,Jones C. J. H.2

Affiliation:

1. Thermo-Fluids Engineering Research Centre, City University, London EC1V 0HB, U.K.

2. Department of Cardiology, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XN, U.K.

Abstract

Three-dimensional flows through canine femoral bifurcation models were predicted under physiological flow conditions by solving numerically the time-dependent threedimensional Navier-stokes equations. In the calculations, two models were assumed for the blood, those of (a) a Newtonian fluid, and (b) a non-Newtonian fluid obeying the power law. The blood vessel wall was assumed to be rigid this being the only approximation to the prediction model. The numerical procedure utilized a finite volume approach on a finite element mesh to discretize the equations, and the code used (ASTEC) incorporated the SIMPLE velocity-pressure algorithm in performing the calculations. The predicted velocity profiles were in good qualitative agreement with the in vivo measurements recently obtained by Jones et al. [1]. The non-Newtonian effects on the bifurcation flow field were also investigated, and no great differences in velocity profiles were observed. This indicated that the non-Newtonian characteristics of the blood might not be an important factor in determining the general flow patterns for these bifurcations, but could have local significance. Current work involves modeling wall distensibility in an empirically valid manner. Predictions accommodating these will permit a true quantitative comparison with experiment.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiphysics analysis for fluid–structure interaction of blood biological flow inside three-dimensional artery;Curved and Layered Structures;2023-01-01

2. Mathematical Modelling of an Incompressible, Newtonian Blood Flow for the Carotid Artery;Advances in Mathematical Modelling, Applied Analysis and Computation;2023

3. Applications of Flow-Induced Vibration in Porous Media;Handbook of Thermal Science and Engineering;2018

4. Applications of Flow-Induced Vibration in Porous Media;Handbook of Thermal Science and Engineering;2017

5. Experimental study of hemodynamics in the circle of willis;BioMedical Engineering OnLine;2015-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3