Micropolar Modeling of Auxetic Chiral Lattices With Tunable Internal Rotation

Author:

Bahaloo Hassan1,Li Yaning2

Affiliation:

1. Department of Mechanical Engineering, University of New Hampshire, Durham, NH, NH03824

2. Department of Mechanical Engineering, University of New Hampshire, Durham, NH, NH03824 e-mail:

Abstract

Based on micropolar continuum theory, the closed-form stiffness tensor of auxetic chiral lattices with V-shaped wings and rotational joints were derived. Representative volume element (RVE) of the chiral lattice was decomposed into V-shape wings with fourfold symmetry. A unified V-beam finite element was developed to reduce the nodal degrees of freedoms of the RVE to enable closed-form analytical solutions. The elasticity constants were derived as functions of the angle of the V-shaped wings, nondimensional in-plane thickness of the ribs, and the stiffness of the rotational joints. The influences of these parameters on the coupled chiral and auxetic effects were systematically explored. The results show that the elastic moduli were significantly influenced by all three parameters, while Poisson's ratio was barely influenced by the in-plane thickness of the ribs but is sensitive to the angle of the V-shaped wings and the stiffness of the rotational springs. There is a transition region out of which the spring stiffness does not considerably affect the auxeticity and the overall lattice stiffness.

Funder

Air Force Office of Scientific Research

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3