Linear Quadratic Regulator for Delayed Systems Using the Hamiltonian Approach and Exact Closed-Loop Poles for First-Order Systems

Author:

Shaik Junaidvali1,Vyasarayani C. P.1,Chatterjee Anindya2

Affiliation:

1. Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad , Sangareddy 502285, India

2. Mechanical Engineering, Indian Institute of Technology Kanpur , Kanpur 208016, India

Abstract

Abstract We consider the linear quadratic regulator (LQR) for linear constant-coefficient delay differential equations (DDEs) with multiple delays. The Hamiltonian approach is used instead of an algebraic Riccati partial differential equation. Two coupled DDEs governing the state and control input are derived using the calculus of variations. This coupled system, with infinitely many roots in both left and right half-planes, defines a boundary value problem. Its left half-plane roots are the exact closed-loop poles of the controlled system. These closed-loop poles have not been used to compute the optimal feedback before. Here, the distributed delay kernel that yields exactly those poles is first computed using an eigenfunction expansion. Increasing the number of terms in the truncated expansion yields a highly oscillatory kernel. However, the oscillatory kernel's antiderivative converges to a piecewise smooth function on the delay interval plus a Dirac delta function at zero. Discontinuities in the kernel coincide with discrete delay values in the original DDE. Using this insight, a fitted piecewise polynomial kernel matches the exact closed-loop poles very well. The twofold contribution of the Hamiltonian approach is thus clarity on the form of the feedback kernel as well as the exact closed-loop poles. Subsequently, the fitted piecewise polynomial kernel can be used for a much simpler control calculation. The polynomial coefficients can be fitted by solving a few simultaneous linear equations. Two detailed numerical examples of the LQR for DDEs, one with two delays and one with three delays, show excellent results.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3