Affiliation:
1. Department of Mechanical Engineering, Centre of Vibration Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
Abstract
A method has been developed for high-accuracy analysis of forced response levels for mistuned bladed disks vibrating in gas flow. Aerodynamic damping, the interaction of vibrating blades through gas flow, and the effects of structural and aerodynamic mistuning are included in the bladed disk model. The method is applicable to cases of high mechanical coupling of blade vibration through a flexible disk and, possibly shrouds, to cases with stiff disks and low mechanical coupling. The interaction of different families of bladed disk modes is included in the analysis providing the capability of analyzing bladed disks with pronounced frequency veering effects. The method allows the use of industrial-size sector models of bladed disks for analysis of forced response of a mistuned structure. The frequency response function matrix of a structurally mistuned bladed disk is derived with aerodynamic forces included. A new phenomenon of reducing bladed disk forced response by mistuning to levels that are several times lower than those of their tuned counterparts is revealed and explained.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献