Interaction Between the Acoustic Pressure Fluctuations and the Unsteady Flow Field Through Circular Holes

Author:

Rupp Jochen1,Carrotte Jon1,Spencer Adrian1

Affiliation:

1. Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire LE11 3TU, UK

Abstract

Gas turbine combustion systems are prone to thermo-acoustic instabilities, and this is particularly the case for new low emission lean burn type systems. The presence of such instabilities is basically a function of the unsteady heat release within the system (i.e., both magnitude and phase) and the amount of damping. This paper is concerned with this latter process and the potential damping provided by perforated liners and other circular apertures found within gas turbine combustion systems. In particular, the paper outlines experimental measurements that characterize the flow field within the near field region of circular apertures when being subjected to incident acoustic pressure fluctuations. In this way the fundamental process by which acoustic energy is converted into kinetic energy of the velocity field can be investigated. Experimental results are presented for a single orifice located in an isothermal duct at ambient test conditions. Attached to the duct are two loudspeakers that provide pressure fluctuations incident onto the orifice. Unsteady pressure measurements enable the acoustic power absorbed by the orifice to be determined. This was undertaken for a range of excitation amplitudes and mean flows through the orifice. In this way regimes where both linear and nonlinear absorption occur along with the transition between these regimes can be investigated. The key to designing efficient passive dampers is to understand the interaction between the unsteady velocity field, generated at the orifice and the acoustic pressure fluctuations. Hence experimental techniques are also presented that enable such detailed measurements of the flow field to be made using particle image velocimetry. These measurements were obtained for conditions at which linear and nonlinear absorption was observed. Furthermore, proper orthogonal decomposition was used as a novel analysis technique for investigating the unsteady coherent structures responsible for the absorption of energy from the acoustic field.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3