Affiliation:
1. Professor Xi'an Research Institute of High Technology, Xi'an 710025, China e-mail:
2. Aviation School, Beijing Institute of Technology, Zhuhai 519088, China e-mail:
Abstract
In this paper, a new method of state space reconstruction is proposed for the nonstationary time-series. The nonstationary time-series is first converted into its analytical form via the Hilbert transform, which retains both the nonstationarity and the nonlinear dynamics of the original time-series. The instantaneous phase angle θ is then extracted from the time-series. The first- and second-order derivatives θ˙, θ¨ of phase angle θ are calculated. It is mathematically proved that the vector field [θ,θ˙,θ¨] is the state space of the original time-series. The proposed method does not rely on the stationarity of the time-series, and it is available for both the stationary and nonstationary time-series. The simulation tests have been conducted on the stationary and nonstationary chaotic time-series, and a powerful tool, i.e., the scale-dependent Lyapunov exponent (SDLE), is introduced for the identification of nonstationarity and chaotic motion embedded in the time-series. The effectiveness of the proposed method is validated.
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献