Finite-Element and Residual Stress Analysis of Self-Pierce Riveting in Dissimilar Metal Sheets

Author:

Huang Li1,Moraes J. F. C.2,Sediako Dimitry G.3,Jordon J. B.4,Guo Haiding5,Su Xuming6

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing 210016, China; Ford Motor Company, Nanjing 210000, China

2. Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35401

3. Canadian Neutron Beam Centre, Canadian Nuclear Laboratories, Chalk River, ON K0J1J0, Canada

4. Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35401 e-mail:

5. Nanjing University of Aeronautics and Astronautics, Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing 210016, China

6. Ford Motor Company, Dearborn, MI 48124

Abstract

The residual stress profile in dissimilar metal sheets joined by a self-piercing rivet is simulated and compared to experimental measurements. Simulation of joining aluminum alloy 6111-T4 and steel HSLA340 sheets by self-piercing riveting (SPR) is performed using a two-dimensional axisymmetric model with an internal state variable (ISV) plasticity material model. Strain rate and temperature dependent deformation of the base materials is described by the ISV material model and calibrated with experimental data. Using the LS-DYNA simulation package, an element erosion technique is adopted in an explicit analysis of the separation of the upper sheet with maximum shear strain failure criterion. An explicit analysis with dynamic relaxation technique was then used for springback and cooling down analysis following the riveting simulation. The residual stress profile of SPR experimental joint with same configuration is characterized using neutron diffraction, and good agreement was found between the simulation and residual stress measurements.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3