Affiliation:
1. Budapest University of Technology and Economics, Budapest, H-1521, Hungary
Abstract
In this paper, a new method for the stability analysis of interrupted turning processes is introduced. The approach is based on the construction of a characteristic function whose complex roots determine the stability of the system. By using the argument principle, the number of roots causing instability can be counted, and thus, an exact stability chart can be drawn. In the special case of period doubling bifurcation, the corresponding multiplier −1 is substituted into the characteristic function, leading to an implicit formula for the stability boundaries. Further investigations show that all the period doubling boundaries are closed curves, except the first lobe at the highest cutting speeds. Together with the stability boundaries of Neimark-Sacker (or secondary Hopf) bifurcations, the unstable parameter domains are formed from the union of lobes and lenses.
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献