Affiliation:
1. Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816
Abstract
In finite element analysis of pressure vessels undergoing elastoplastic deformation, low stiffness of the tangent modulus tensor will engender low stiffness in the tangent stiffness matrix, posing a risk of computational difficulties such as poor convergence. The current investigation presents the explicit tangent modulus tensor in an elastoplastic model based on a Von Mises yield surface with isotropic work hardening, and the associated flow rule. The stiffness of the tangent modulus tensor is assessed by deriving explicit expressions for its minimum eigenvalue using both tensor diagonalization and Rayleigh quotient minimization. The derived expressions are validated computationally. Using the minimum eigenvalue, the stiffness is found to depend on the current path in stress space. The results of the current investigation suggest a way of following a stress path, which bypasses low stiffness, while attaining the prescribed load.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality