Affiliation:
1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125
Abstract
A membrane-based humidifier that uses cooling water of a fuel cell system to humidify the inlet air is modeled and analyzed in this paper. This four-state lumped model is simple and yet captures the humidification behavior accurately. A peculiar characteristic of this system is the fact that it exhibits nonminimum-phase (NMP) behavior. The reason the NMP behavior exists and the effect of system parameters on the location of the NMP zero are analyzed. A proportional control algorithm is proposed to reject the effect of system disturbances, and a feed-forward algorithm is developed to ensure proper humidifier operation under air flow rate changes. Because the NMP zero exists in the disturbance-to-output loop, the proposed algorithm was found to successfully eliminate the undershoot phenomena associated with the NMP zero. However, the disturbance-to-output loop is coupled with input-to-output loop, and the NMP zero could affect the feedback control design.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献