Design of a Surgical Pen-Type Probe for Real-Time Indocyanine Green Fluorescence Emission Diagnosis

Author:

Yoon Ki-Cheol1,Kim Kwang Gi2,Lee Seung Hoon3

Affiliation:

1. Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, Dokjom-ro 3, Namdong-gu, Incheon 21565, South Korea; Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, South Korea

2. Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, Dokjom-ro 3, Namdong-gu, Incheon 21565, South Korea; Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, South Korea; Department of Biomedical Engineering, College of Health Science, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 219

3. School of Medicine, Eulji University, 77 Gyeryong-ro 771 Beon-gil, Jung-gu, Daejeon 34824, South Korea; Department of Neurosurgery, Daejeon Eulji Medical Center, Eulji University, 95, Dunsanseo-ro, Seo-gu, Daejeon 35233, South Korea

Abstract

Abstract The advantage of handheld type surgical microscope is that the size of the probe is small and light, and that both the working distance (15–30 cm) and field of view (30 deg) can be adjusted. The shortness working distance will minimize the loss of light source energy. However, the currently developed handheld type surgical microscope is still large, heavy, and uses relatively high energy (600 mW/cm2). To address the aforementioned problems, this study aimed to develop a pen-type surgical fluorescence microscope that is compact, portable, and has an adjustable beam angle and working distance. These features enable real-time diagnosis. The pen-type probe consists of a laser diode, CMOS camera, light source brightness control device, filter, and power switch. The IR-cut filter inside the CMOS camera was removed to facilitate transmission of the fluorescence emission wavelength. In addition, a long-pass filter was attached to the camera so that the external light source was blocked and only the fluorescence emission wavelength was allowed to pass through. The performance of the pen-type probe was tested through a large animal experiment. Indocyanine green (2.5 mg/kg) was injected into a pig's vein. Fluorescence emission of 805-830 nm was achieved by irradiating an external light source (785 nm and 4 mW/cm2), and liver-uptake occurred after 2.4 min. The designed pen-type probe was capable of sufficiently fluorescence expression through low-energy irradiation, and the pen-type probe is small and light and easy to handle by hand because both the pen-based laser device and the camera device are integrated. In addition, it is easy to adjust the working distance and field of view.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference39 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3