Affiliation:
1. 33 Massachusetts Avenue Cambridge, MA 02139
2. 2047 Kings Grove Crescent Ottawa, ON K1J 6E9 Canada
3. 33 Massachusetts Ave MA 02139 Cambridge, MA 02139
Abstract
Abstract
In this paper, we present “BIKED,” a dataset comprised of 4500 individually designed bicycle models sourced from hundreds of designers. We expect BIKED to enable a variety of data-driven design applications for bicycles and support the development of data-driven design methods. The dataset is comprised of a variety of design information including assembly images, component images, numerical design parameters, and class labels. In this paper, we first discuss the processing of the dataset, then highlight some prominent research questions that BIKED can help address. Of these questions, we further explore the following in detail: 1) How can we explore, understand, and visualize the current design space of bicycles and utilize this information? We apply unsupervised embedding methods to study the design space and identify key takeaways from this analysis. 2) When designing bikes using algorithms, under what conditions can machines understand the design of a given bike? We train a multitude of classifiers to understand designs, then examine the behavior of these classifiers through confusion matrices and permutation-based interpretability analysis. 3) Can machines learn to synthesize new bicycle designs by studying existing ones? We test Variational Autoencoders on random generation, interpolation, and extrapolation tasks after training on BIKED data. The dataset and code are available at http://decode.mit.edu/projects/biked/
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献