Spindle Condition Monitoring With a Smart Vibration Sensor and an Optimized Deep Neural Network

Author:

Oh Louis1,Pitz Emil1,Pochiraju Kishore1

Affiliation:

1. Stevens Institute of Technology Department of Mechanical Engineering, , Hoboken, NJ 07030

Abstract

Abstract This article presents a spindle condition monitoring methodology using a low-power smart vibration sensor and a near real-time deep neural network (DNN) classifier. The most frequent spindle failures, such as imbalance, ingression, and evidence of a crash with the workpiece, are analyzed in this study. Experiments were designed to induce various failure events to monitor the spindle behavior using conventional vibration, current and temperature sensors, and an intelligent vibration sensor. The smart sensor is a device with internal signal processing identifying eight dominant frequencies and the amplitude/power distributions. It requires low power and generates narrow bandwidth messages that can be communicated wirelessly. A Fog device and a test plan are designed to monitor and store a dataset needed to train a DNN classifier. The Fog device generates temperature, current, and vibration signals from sensors connected to the spindle and sends them to data storage in the cloud. The signals were analyzed using both conventional vibration analysis and Artificial Intelligence-based classifiers. Metrics such as crest factor, skewness, kurtosis, and overall enveloping were used to assess their ability to identify the failure condition. The data from the smart sensor are used to train an optimized DNN, and the spindle defect classification performance is measured. With 960 data points per failure mode and training data taken over 960 min of operation, the optimized DNNs can classify the spindle states with an accuracy of 98%. The study shows real-time spindle condition classification feasibility over long periods using inexpensive and low-power smart vibration sensors.

Publisher

ASME International

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3