Analysis of the Heat Transfer Within Combustor Liners Using a Combined Monte Carlo and Two-Flux Method

Author:

Johnson Andressa L.1,Zhao Xinyu1

Affiliation:

1. Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269

Abstract

Abstract One consequence of increasing efficiency of gas turbine combustors is higher temperatures within the combustor. Management of larger heat load has been advanced to protect the combustor wall and turbines, and among those are thermal barrier coatings (TBCs). Historically, both the flame and TBCs have received a simplified radiation treatment using effective absorptivities and emissivities. In this study, non-gray radiation is compared with gray and black radiation by combining three-dimensional Monte Carlo Ray Tracing solution of non-gray flames in a model gas turbine combustor to one-dimensional energy balance within combustor liners. A recent large eddy simulation of a gas turbine combustor is analyzed, where both gray and non-gray models are exercised. A two-band spectral model is employed for the TBC, where a translucent band and an opaque band are identified. A line-by-line treatment for gas-phase radiation is adopted, and the incident radiative energy on the combustor wall is collected using the MCRT solver, where the fraction of radiative energy within the translucent band is collected and compared with those obtained from the blackbody assumption. The temperature along the multilayered combustor wall is computed, and parametric comparison is conducted. The effects of the nongray flame radiation are more prominent at elevated pressures than at atmospheric pressure. The gray model is found to over-predict the TBC temperature, which leads to a difference of approximately 150 K in the prediction of peak temperature on the hot side of the TBC.

Funder

University of Connecticut

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3