Spectral Simulation on the Flow Patterns and Thermal Control of Radiative Nanofluid Spraying on an Inclined Revolving Disk Considering the Effect of Nanoparticle Diameter and Solid–Liquid Interfacial Layer

Author:

Acharya Nilankush1

Affiliation:

1. Kolkata 700122, West Bengal, India

Abstract

Abstract The current work enlightens the flow pattern and thermal scenario of a nanofluid spraying on an inclined permeable rotating disk. The whirling disk is assumed to revolve with the angular speed Ω. The water-based alumina (Al2O3) nanofluid is considered as a functioning liquid. The nanofluid spraying is treated to be magnetically influenced and thermally radiative. The perception of the nanoparticles' diameter and solid–liquid interfacial layer is incorporated precisely at the nanolevel to observe the thermal variations of the nanofluidic motion. How the magnetic effect, permeability, and nanolayer affect nanofluidic transportation is revealed in detail. The leading flow equations are altered nondimensional using apposite similarity translation, and the spectral quasi-linearization method (SQLM) is instigated to tackle those multi-ordered nonlinear equations. Various three-dimensional figures, graphs, and tables are described to detect and analyze the hydrothermal variations. The linear regression slope technique is addressed to extract the reduction or enhancement rate of heat transference. Also, the probable error is estimated statistically to assure that hydrothermal characteristic is correlated with physical parameters. The consequences indicate enhanced heat transport for nanolayers, but reduced heat transmission for nanoparticles' diameter. Thermal profile intensifies for thickness parameter and impermeable surface, whereas decreases for nanoparticles' diameter.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference53 articles.

1. Thermal Conductivity of Heterogeneous Two Component Systems;Ind. Eng. Chem. Fundam.,1962

2. Enhancing Thermal Conductivity of Fluids With Nanoparticles,1995

3. Applications of Nanofluids: Current and Future;Adv. Mech. Eng.,2010

4. An Updated Review of Nanofluids in Various Heat Transfer Devices;J. Therm. Anal Calorim.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3